12
Hemp Pulp and Paper Production
Gertjan van Roekel jr.
ATO-DLO Agrotechnology, P.O.box 17, 6700 AA Wageningen, The Netherlands
Van Roekel, G J, 1994.
Hemp pulp and paper production. Journal of the International Hemp
Association 1: 12-14.
A brief review of the history of paper making
reveals the important role of hemp in the development of the industry. The technical
aspects of classical hemp pulping and paper making and the present status of the hemp pulp
and paper industry are discussed. It is shown that for new applications of hemp as a
paper making fibre source, new pulp technology is required. This article is the
first in a series about hemp pulping and paper making.
History of paper making
The
use of fibre hemp (Cannabis sativa L.) for pulp and paper dates back more than
2,000 years. The oldest surviving piece of paper in the world was discovered by
archeologists in 1957 in a tomb near Sian in Shensi province, China (Temple 1986).
It is about 10 cm square and can be dated precisely between the years 140 and 87
BC. This paper and similar bits of paper surviving from the next century are thick,
coarse, and uneven in their texture. They are all made of pounded and disintegrated
hemp fibres. Paper historians agree that the earlier Egyptian papyrus sheets should
not be referred to as paper, because the fibre strands are woven and not
"wet-laid" (Hunter 1957). The Chinese paper-making craftsmanship was
transferred to Arabic and North-African countries, and from there to Europe. The
first European paper making was reported in the first half of the 16th century (Hunter
1957).
Until the early 19th century, the only raw
material available for paper making was rags. Rags are worn-out clothes. Since
at that time clothing was solely made of hemp and flax (sometimes cotton), almost all
paper in history was thus made of hemp and flax fibres. With the industrial
revolution, the need for paper began to exceed the available rag supply. Although
hemp was the most traded commodity in the world up to the 1830s (Conrad 1993), the
shortage of rags threatened the monopoly for hemp and flax as paper-making fibres.
This was the major incentive for inventors and industries to develop new processes
to use the world's most abundant (and cheap) source of natural fibres: our forests.
Currently, only about 5% of the world's paper
is made from annual plants like hemp, flax, cotton, sugarcane bagasse, esparto, wheat
straw, reeds, sisal, abaca, banana leaf, ananas and some other more exotic species.
The world hemp paper pulp production is now believed to be around 120,000 tons per
year (FAO 1991), which is about 0.05 % of the world's annual pulp production volume.
Hemp pulps are generally blended with other (wood-) pulps for paper production.
There is currently no significant production of 100 % true hemp paper.
Renewed interest in hemp paper
The
recent renewed interest in hemp as a paper-making fibre seems to originate from a strong
environmental motive. All primary forests in Europe, and most in North America have
been destroyed, amongst others for paper production. Now we accuse the nations which
still have primary forests of not guarding theirs.
In Europe all trees harvested for paper making
were intended for that purpose, so there seems to be no valid reason to switch to a
non-wood or "tree-free" fibre source. This of course is a little different
in the Americas and in Asia and Australia, where primary forests are cleared at a huge
environmental cost. In these regions hemp has a number of advantages as an
alternative source of paper-making fibre. Hemp does not need pesticides or
herbicides, and yields three to four times more usable fibre per hectare per annum than
forests. And last but not least: paper recycling was invented to make up for the
mistake of cutting down our primary forests. Technically speaking, one doesn't need
to recycle hemp paper, because it is a renewable raw material.
One disadvantage of using hemp or other annual
plants as fibre source is that the present pulping technology has been optimised for
tree-fibre pulping, so some adjustments in the pulping processes need to be made when
applying this technology to hemp fibres. Before going into technical details, we
will first examine the technology of pulp and paper making.
Pulping and paper making
Paper
making is essentially the rearranging of elementary fibres from whatever source (a tree, a
hemp stalk, an old pair of jeans or even a scoop of algae) into a flat thin sheet.
Elementary fibres are the basic building blocks
of trees and many plants. The average paper making fibre is about 2 mm long and
about 20 micrometers (0.02 mm) thick. All fibres are assembled of chains of
cellulose molecules, arranged as a rigid structure. These building blocks are glued
together with other biological components (lignins, pectins), which give a certain
flexibility and strength to the tissue, so that the tree or plant can bend at high
stresses, and doesn't break in a storm, and is able to carry its seeds and fruits.
The following explains what is needed to process a fibre source into paper (Smook
1982):
Pulping (from fibre source to pulp):
Papermaking (from pulp to paper):
These processes are essentially the same for manual paper making and for modern paper machines, with the difference that the old paper maker put out one handmade sheet per minute, and the state-of-the-art Fourdrinier newsprint paper machine puts out 15,000 square meters a minute: a 10 meter wide sheet at 90 kilometers an hour!
Remainders of the hemp pulp industry
Although
there are thousands of non-wood paper mills in the world, only a few of them use hemp as a
fibre source. At present 23 paper mills use hemp fibre, at an estimated world
production volume of 120,000 tons per annum. Most of the mills are located in China
and India, and produce moderate quality printing and writing paper. Typically, these
mills do not really have a fixed source of fibre, but they simply use whatever can be
found in the region. About 10 of the mills are located in the western world (US, UK,
France, Spain, eastern Europe, Turkey), and these mills produce so-called specialty papers
such as:
These papers can generally
only be produced from special fibres like hemp, flax, cotton and other non-wood fibre
sources. The average hemp pulp and paper mill produces around 5000 tons per annum.
This should be compared to a "normal" pulp mill for wood fibre, which is
never smaller than 250,000 tons per annum. The only reason the remaining mills can
still produce at this extremely small size is that there is a very special use for the
pulp. This partly explains the high price for a hemp pulp: about US $2500 per ton
versus about US $400 for a typical bleached wood pulp. The remaining mills in the
western world are unable to cope with western environmental regulations because of their
small size and archaic technology. Some mills survive by shipping their waste water
to a large wood pulp mill nearby, others have to close down. There is a clear shift
in capacity towards countries that do not as yet take environmental problems very
seriously.
One reason for the high price of hemp pulp is
the inefficient pulping processes used. Another reason is that hemp is harvested
once a year (during August) and needs to be stored to feed the mill the whole year
through. This storage requires a lot of (mostly manual) handling of the bulky stalk
bundles, which accounts for a high raw material cost.
Classical pulping technology
Most
mills predominantly process the long hemp bast fibres, which arrive as bales of cleaned
ribbon from preprocessing plants located near the cultivation areas. The bales are
opened and fed into a spherical tank, called a digester. Water is added (5 to 10
times the fibre weight), together with the cooking chemicals to remove the
"glue" components lignin and pectin from the fibres. Most mills use sodium
hydroxide and sulphur cocktails.
The fibres are cooked for several hours
(sometimes up to eight hours) at elevated temperature and pressure, until all fibres are
separated from each other. After cooking, the cooking chemicals and the extracted
binding components are separated from the fibres by washing with excess water. This
is where most of the polluting waste emerges from the process. Often wastes are
discharged as such into the local surface water.
The remaining clean fibres are then fed into a
Hollander beater, which is best compared to an industrial size bathtub, with a large wheel
revolving around a horizontal axis at one point in the tub. The wheel pumps the pulp
round and round, and meanwhile cuts the fibres to the right length, and also gives the
fibres the required surface roughness for better bonding capacity. This beating goes
on for up to twelve hours per batch. Some mills add bleaching chemicals in this
beating process, other mills pass the pulp from the beating machines to separate tanks for
bleaching. These separate bleaching treatments often use chlorine compounds, which
are also discharged into the environment. The bleached pulp is then ready to be
pumped to the paper machine, or can be pressed to a dryness suitable for transportation to
a paper mill elsewhere. The processing time of more than twenty hours make this
process very expensive, as the costly equipment and handling must be depreciated over a
very low throughput.
Necessity for new technology
New
applications for hemp as a paper making raw material require a new pulping technology
which must be able to use hemp from wet storage. Some new technologies have been
developed, albeit in laboratory or on pilot scale. The next item in this series
about hemp pulping and papermaking will discuss these new technologies and their benefits.
References